
Spectral equation S1 for minimax estimators of
parameters in linear models

V. L. GIRKO

Department of Probability and Statistics, Michigan State University

East Lansing, Michigan 48824

In many cases the estimation of parameters of simultaneous equations amounts to the
search for the minimum value of maximum eigenvalues on a certain set of numbers. There
is a wide range of published papers dealing with the estimation problem by means of the
spectral theory of linear operators [1,2,6,12]. For this reason such estimators will be called
spectral or S-estimators. In this section a set of S-estimators for parameters of linear
systems, denoted by S1 is suggested.

Assume that the linear regression model

~y = X~c + ~ε

is given, where ~c is an unknown m-dimensional vector, ~y is an n -dimensional vector of
observations,

Xn×m = (xij) , j = 1, ...,m; i = 1, ..., n, n ≥ m

is a matrix, and ε is an n-dimensional random vector of unobservable perturbations such
that

E ~ε = 0, E ~ε~εT = Rn×n.

Let ~cT Dm×m~c ≤ α, where Dm×m is a positive definite matrix, 0 < α < ∞. We will find a
linear transformation of the vector ~y :

Tm×n~yn + ~tm

such that the maximum loss function

ϕ := max
~c:~cT Dm×m~c≤a

E
(
T~y + ~t− ~c

)T
Vm×m

(
T~y + ~t− ~c

)
,

where Vm×m is a nonnegative definite symmetric matrix, is minimal. Let this minimum
be attained for T = T̂m×n; ~t = ~̂tm. The optimal vector

~̂c = T̂ ~y + ~̂t

is called the S1-estimator (or minimax estimator) of the vector ~c. Let

Y = R−1/2X, B = D−1/2V D−1/2 = UΓ2UT ,
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where Um×m is the orthogonal matrix of eigenvectors, and Γm×m =
(
γ

1/2
i δij

)
is the

diagonal matrix. Denote by

γ1 ≥ γ2 ≥ · · · ≥ γs > 0, γs+1 = · · · = γm = 0

the eigenvalues of the matrix B, where s is an integer,

Z = Y D−1/2U = HW 1/2, H = Z
(
ZT Z

)−1/2
, W = ZT Z.

Let Ls×m be the set of real matrices of the size s×m, and let Km be the set of real
vectors of dimension m.

Theorem 5.1. If the matrices D,XT X and R are nondegenerate, then

min
Tm×n∈Lm×n,~tm∈Km

max
~c∈Km:~cT D~c≤a

E
(
~c− Tm×n~y ± ~tm

)T
V

(
~c− Tm×n~y ± ~tm

)

= min
T̂∈Lm×n

{
aλmax

[
D−1/2

(
I − T̂X

)T

V
(
I − T̂X

)
D−1/2

]
+ TrT̂T V T̂R

}

= min
As×m∈Ls×m

{
aλmax

[
AT

s×mAs×m

]
+ Tr W ±1 (As×m + Γs×m)T (As×m + Γs×m)

}
,

where
V 1/2~̂t = ~0,

λmax is the maximum eigenvalue of a matrix, Im×m is the identity matrix,

Γs×m = [Γs×s, 0s×m−s] , Γs×s = (δkl
√

γk)s
k,l=1 , 0s×(m−s)

is the matrix with zero entries,

T̂ = D−1/2U

[ (
Γ−1

s×sAs×m + Is×m

)
UT D1/2

(
XT R−1X

)−1
XT R−1

A(m−s)×n

]
,

and A(m−s)×n are arbitrary matrices from the set L(m−s)×n, Is×m = [Is×s, 0s×m−s].

Proof. We transform the criterion of estimates quality by substituting the value of the
vector and calculate the expectation

ϕ : = max
~c∈Km:~cT D~c≤a

{
~cT (TX − I)T

V (TX − I)~c

+ 2
∣∣~tT V (TX − I)~c

∣∣} + ~tT V~t + TrR1/2TT V TR1/2.

If we find a minimum for some ~t ∈ Km then it is easy to see that ~t satisfies the
equation V 1/2~̂t = ~0. Let us make the change of variables in the expression for ϕ :

T = T̃R−1/2, T̃ ∈ Lm×n, ~c = D−1/2~̃c, ~̃c ∈ Km.
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Then by Rayleigh’s formula, we obtain

ϕ = aλmax

{
D−1/2

(
T̃ Y − I

)T

V
(
T̃ Y − I

)
D−1/2

}
+ Tr T̃T V T̃

= aλmax

{(
D1/2T̃ Y D−1/2 − I

)T

B
(
D1/2T̃ Y D−1/2 − I

)}

+ Tr T̃T D1/2BD1/2V T̃ .

From this formula, applying the transformation

B = UΓ2UT ,

we get

ϕ = aλmax[(T1Z − I)T Γ2(T1Z − I)]] + TrTT
1 Γ2T1, (6.1)

where

T1 = UT D1/2T̃ .

Since the matrix Z = Y D−1/2U can always be represented in the form

Z = HW 1/2, H = Z
(
ZZT

)−1/2
, W = ZZT ,

a simple manipulation yields:

ϕ = aλmax[(T1H̃W̃ − Im×n)T Γ2(T1H̃W̃ − Im×n)]] + TrTT
1 Γ2T1, (6.2)

where H̃ =
[
Hn×m, Qn×(n−m)

]
, a real matrix Q is chosen so that the matrix[

Hn×m, Qn×(n−m)

]
is a square orthogonal matrix; Im×n = [Im×m, 0m×n−m],

W̃n×n =
[

W 1/2 0
0 0

]
,

where the matrix W 1/2 is augmented by zeros so that it has dimension n×n. It is not hard
to ascertain by multiplying the matrices that expressions (6.1) and (6.2) coincide. Now
we can make in (6.2) the change of variables T1 = T2H̃

T where T2 ∈ Lm×(n−m), which
is a one-to-one transformation, since H̃ is a square orthogonal matrix. After the change,
expression (6.2) takes the form

ϕ = aλmax

{(
T2W̃ − Im×n

)T

Γ2
(
T2W̃ − Im×n

)}
+ TrTT

2 Γ2T2. (6.3)

Considering that the matrix T2W̃ does not depend on the columns of matrix T2

beginning with the (m + 1)-st column and that

T2 =
[
T2,(m×m), T2,m×(n−m)

]
.
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from expression (6.3) we get

ϕ = aλmax

[(
T2,(m×m)W

1/2 − Im×m

)T

Γ2
(
T2,(m×m)W

1/2 − Im×m

)]

+ Tr
[
T2,(m×m), T2,m×(n−m)

]T Γ2
[
T2,(m×m), T2,m×(n−m)

]
.

(6.4)

Now, prior to searching for the minimum over all matrices T2,m×m, we may find the
minimum over all matrices T2,m×(n−m). Evidently, the matrix to be found is a solution to
the equation

ΓT̂2,m×(n−m) = 0m×(n−m). (6.5)

Turning to expression (6.4) and taking into account (6.5), we get

min
T2∈Lm×(n−m)

ϕ = min
T2∈Lm×(n−m)

{
aλmax

[(
T2,(m×m)W

1/2 − Im×m

)T

Γ2

×
(
T2,(m×m)W

1/2 − Im×m)
]

+ Tr TT
2,(m×m)Γ

2T2,(m×m)

}
.

(6.6)

Let us make the change of variables

T2,m×mW 1/2 − Im×m = Am×m

in (6.6)

min
T2∈Lm×(n−m)

ϕ = min
A∈Ls×m

{
aλmax

[
AT Γ2A

]
+ TrW−1

(
AT + Is×m

)
Γ2 (A + Is×m)

}

= min
Ã∈Ls×m

{
aλmax

(
ÃT

s×mÃs×m

)
+ TrW−1

(
Ãs×m + Γs×m

)T (
Ãs×m + Γs×m

)}
,

(6.7)
where Ãs×m = Γs×sAs×m, Γs×m =

{
Γs×s, 0s×(m−s)

}
.

Consequently, to complete the proof of Theorem 6.1, we must find the matrix T̂ .
Written in tandem are the necessary transformations of this matrix:

T = T̃R−1/2, T1 = UT D1/2T̃ , T1 = T2,m×mHT + T2,m×(n−m)Q
T ,

ΓT2,m×(n−m) = 0m×(n−m),

T2,m×m =
[{

Γ−1
s×sÃs×m

A(m−s)×m

}
+ Im×m

]
W−1/2.

Considering that

T2 H̃T = T2,m×mHT + T2,m×(n−m)Q
T
n×(n−m),
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we get

Tn×m = D−1/2U

{[
Γ−1

s×sÃs×m

A(m−s)×m
+ Im×m

]
W−1/2HT

n×m + T2,m×(n−m)Q
T
n×(n−m)

}
R−1/2.

Now we can easily derive the expression for the matrix T̂ , defined in Theorem 6.1.
This concludes the proof of the theorem. Thus we have somewhat simplified the search for
estimators of the vector and have reduced it to finding

min
A∈Ls×m

{
aλmax

(
AT A

)
+ TrW−1 (A + Γs×m)T (A + Γs×m)

}
. (6.8)

As is easily verified,

λmax(AT A) = λmax(AAT ).

For this reason we may assume in what follows that in expression (6.8) λmax(AAT ) is
replaced by λmax(AT A). In looking for the minimum of expression (6.8), we run into the
main difficulty arising from the fact that the eigenvalue λmax(AAT ) of the sought-for matrix
Â may turn out to be multiple, thus preventing us from utilizing well-known perturbation
formulas for eigenvalues of multiplicity 1. To surmount this difficulty, we apply the method
proposed in [15]. Consider the function

ϕε(A) := aEλmax

(
AAT + εΞs×s

)
+ TrW−1 (A + Γs×m)T (A + Γs×m) ,

where Ξs×s = (ξij) is a symmetric random matrix, whose entries ξij , i ≥ j; i, j = 1, ..., s
are independent and are distributed in accordance with the normal law N

[
0, (1 + δij)2−1

]
,

ε 6= 0 is a real number. Since the eigenvalues of a square matrix K are continuous functions
of the coefficients of its characteristic equation

det (Iz −K) = 0,

for all matrices A ∈ Ls×m we have

lim
ε→0

sup
A∈Ls×m

|ϕ(A)− ϕε(A)| = 0 (6.9)

We prove that the function ε is strictly convex. Reasoning as in [10] and applying the
Cauchy-Bunyakovskii inequality, we see that for all A, B ∈ Ls×m, 0 < α, β; α + β = 1

ϕ (αA + βB) = a max
~c∈Km:~cT ~c≤1

~cT (αA + βB)T (αA + βB)~c + TrW−1

× (αA + βB + Γs×m)T (αA + βB + Γs×m)

< aαλmax

(
AT A

)
+ aβλmax

(
AT A

)

+ αTrW−1(A + Γs×m)T (A + Γs×m)

+ βTrW−1(B + Γs×m)T (B + Γs×m).
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A similar argument makes it possible to conclude that the function ϕε(A) is likewise
strictly convex. Therefore, either of the two functions ϕ and ϕε(A) has unique points of
minimums, Â and Âε, respectively. But then it follows from (6.9) that

lim
ε→0

Âε = Â. (6.10)

Let us represent the matrix Â :

Âs×m =
∑s

k=1
λk~uk~v

T
k , λ1 = λ2 = · · · = λj > λj+1 ≥ · · · ≥ λs > 0,

where ~uk, k = 1, ..., s are s-dimensional orthogonal vectors, ~vk, k = 1, ..., s are m-
dimensional orthogonal vectors and j is a number such that 1 ≤ j ≤ s.

Theorem 6.2. The numbers λk and the vectors ~uk, ~vk satisfy the S1 -equation

Wal1

j∑

k=1

~νk~uT
k pk + λ1

j∑

k=1

~νk~uT
k +

s∑

k=j+1

λk~νk~uT
k + ΓT

s×m = 0, (6.11)

where

pk > 0,
∑j

k=1
pk = 1, Y = R−1/2X, B = D−1/2V D−1/2 = UΓ2UT ,

Um×m is the orthogonal matrix of eigenvectors, and Γm×m =
(
γ

1/2
i δij

)
is the diagonal

matrix,

γ1 ≥ γ2 ≥ · · · ≥ γs > 0, γs+1 = · · · = γm = 0

are the eigenvalues of the matrix B, s is an integer, and

Z = Y D−1/2U = HW 1/2, H = Z
(
ZT Z

)−1/2
, W = ZT Z.

Proof. Let us first prove that there exists the derivative

(∂/∂γ)ϕε (A + γΘ)|γ=0 , Θ ∈ Ls×m.

To do this, we consider the expression

lim
γ↓0

γ−1 [ϕε (A + γΘ)− ϕε (A)] = lim
γ↓0

aγ−1E
[
λmax

{
(A + γΘ) (A + γΘ)T + εΞ

}

−λmax

(
AAT + εΞ

)] (
χ (B) + χ

(
B̄

))
+ 2TrW±1 (A + Γsxm)T Θ,

(6.12)

where B is the following random event:

B =
{
ω :

∣∣λmax

(
AAT + εΞ

)− λi

(
AAT + εΞ

)∣∣ > δ, i ≥ 2
}

, δ > 0,
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χ(B) is the indicator for the event B. The density of eigenvalues ν1 ≥ · · · ≥ νs of matrix
(A + γΘ)(A + γΘ)T + εΞ is

p(y1, ..., ys) := cε

∫

G

exp

{
−Tr

[
(A + γΘ)(A + γΘ)T −HY HT

]2
2ε2

}
µ(dH)

∏

i>j

|yi − yj |,

(6.13)
where H is an orthogonal matrix of the s-th order, µ is the Haar measure on the group G
of orthogonal matrices H = (hij) , cε is the normalizing factor, and y1 > · · · > ys.

Using this density and the Schwarz inequality we get

E
∣∣λmax

{
(A + γΘ)(A + γΘ)T + εΞ

}− λmax

{
AAT + εΞ

}∣∣ χ(B̄)

≤
√

2
∣∣Eλ2

max

{
(A + γΘ)(A + γΘ)T + εΞ

}
+ Eλ2

max

{
AAT + εΞ

}∣∣1/2
Eχ(B̄)

≤ c

s∑

i=2

P {|ν1 − νi| ≤ δ} ≤ c1

s∑

i=2

∫

|y1−yi|<δ

p (y1, · · · , ys)
s∏

k=1

dyk ≤ c2

∫

|u|<δ

|u| du ≤ c3δ
2,

where ci are constants. By virtue of the perturbation formulas for simple eigenvalues,
(6.12) and (6.14), we get

∂

∂γ
ϕε(A + γΘ)

∣∣∣∣
γ=0

= lim
γ↓0

γ−1
{

aE ~ψT
1ε

[
(A + γΘ) (A + γΘ)T −AAT

]
~ψ1ε + ν(δ)

}

+ 2TrW−1 (A + Γs×m)T Θ,

where ~ψ1ε is an eigenvector associated with the eigenvalue ν1,

|ν(δ)| ≤ c1

[
δ2 +

1
δ

∥∥(A + γΘ)(A + γΘ)T −AAT
∥∥2

×
(

1− 1
δ

∥∥(A + γΘ)(A + γΘ)T −AAT
∥∥
)−1

]
.

Choosing δ in such a way that

lim
γ↓0

[γ−1δ2 + δ−1γ] = 0

we obtain

∂

∂γ
ϕε(A + γΘ)

∣∣∣∣
γ=0

= 2E ~ψT
1εΘAT ~ψ1ε + 2TrW−1 (A + Γs×m)T Θ. (6.15)

Insofar as the function ϕε(A) has a unique minimum, Âε, and is strictly convex, for
all Θ ∈ Ls×s we have
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(∂/∂γ) ϕε

(
Âε + γΘ

)∣∣∣
γ=0

= 0.

From this equality, (6.15) and the fact that Θ ∈ Ls×m is an arbitrary matrix, it follows
that the unknown matrix Âε is given by the equation

E aÂT
ε

~ψ1ε
~ψT
1ε + W−1

(
ÂT

ε + ΓT
s×m

)
= 0. (6.16)

Moreover this equation always has a unique solution. Since ÂT
ε = Hε

(
ÂεÂ

T
ε

)1/2

,

where Hε = ÂT
ε

(
ÂεÂ

T
ε

)−1/2

is an orthogonal matrix, then for small enough ε equation
(6.16) is equivalent to

E
{

aHεν
1/2
1

~ψ1ε
~ψT
1ε + W−1

(
ÂT

ε + ΓT
sxm

)
+ Hεa

[(
ÂεÂ

T
ε

)1/2

−
(
ÂεÂ

T
ε + εΞ

)1/2
]

~ψ1ε
~ψT
1ε

}
χ (νi ≥ 0, i = 1, ..., s) = 0. (6.17)

Let us prove the auxiliary assertion.

Lemma 6.1. For a certain subsequence ε → 0

lim
ε↓0

E ν
1/2
1 Hε

~ψ1ε
~ψT
1ε = λ1

∑j

k=1
pk~vk~uT

k , (6.18)

where

pk > 0,
∑j

k=1
pk = 1.

Proof. According to (6.13) we get

E ~ψ1ε
~ψT
1ε = cε

∫

y1>···>ys

~h1
~hT

1 exp
{
−(2ε2)−1Tr

(
ÂεÂ

T
ε −HY HT

)2
}

µ(dH)

×
∏

i>j

|yi − yj |
s∏

k=1

dyk,

(6.19)

where ~h1 is the first column vector of the matrix H. Since the matrix Â ÂT
ε can always

be represented as Â ÂT
ε = UεΛεU

T
ε , where Uε is the orthogonal matrix of eigenvectors

~uiε, i = 1, ..., s and
Λε = (λi εδij) , λ1ε ≥ · · · ≥ λs ε

is the diagonal matrix of eigenvalues, making the change of variables H = UεH̃, H̃ ∈ G
and invoking the invariance of the Haar measure, from formula (6.19) we obtain

8



E ~ψ1ε
~ψT
1ε = cεUε

∫
y1>....>ys

~̃h1
~̃h

T

1 UT
ε exp

{
− (

2ε2
)−1

Tr (Λε −H̃Y H̃T
)2

}

× µ(dH̃)
∏

i>j

|yi − yj |
s∏

k=1

dyk

= Uε

{
Eψ2

i1,ε(Λε + εΞ)δij

}s

i,j=1
UT

ε ,

(6.20)

where ~ψ1(Λε + εΞ) is the eigenvector of matrix Λε + εΞ corresponding to the maximum
eigenvalue. Let us represent the matrix Âε :

Âε =
∑s

k=1
λkε~ukε~v

T
kε, λ1ε ≥ · · · ≥ λsε > 0,

where ~ukε, k = 1, ..., s are s-dimensional orthogonal vectors, ~vkε, k = 1, ..., s are m-
dimensional orthogonal vectors and j is a number such that 1 ≤ j ≤ s.

The perturbation formulas for eigenvalues imply that

lim
ε→0

λkε = λ1, k = 1, ..., j, lim
ε→0

λq ε = λq, q = j + 1, ..., s, (6.21)

lim
ε→0

~ukε = ~uk, lim
ε→0

~vkε = ~vk, k = 1, ..., s,

and since λq 6= λ1, q = j + 1, ..., s, then we have

lim
ε→0

∑s

q=j+1
~ψq ε

~ψT
q ε =

[
0j×j 0j×(s−j)

0(s−j)×j I(s−j)×(s−j)

]
,

where I is a square identity matrix of order s − j. But in this case ψ2
1i(Λε + εΞ) → 0, as

ε → 0 for all i = j + 1, ..., s, and

lim
ε→0

∑s

q=j+1
~ψq ε

~ψT
q ε 6=

[
0j×j 0j×(s−j)

0(s−j)×j I(s−j)×(s−j)

]
,

otherwise. Therefore, setting

pi ε = Eψ2
i1,ε (Λε + εΞ)

and utilizing (6.21) from formula (6.20) we obtain that for a certain subsequence ε′ → 0

lim
ε↓0

E ν
1/2
1 Hε

~ψ1ε
~ψT
1ε = λ1 lim

ε↓0
HεUεpi εδij

s
i,j=1U

T
ε = λ1

∑j

k=1
pk~vk~uT

k .

Hence Lemma 6.1 is proved.

Lemma 6.1 implies that

lim
ε/→0

Âε′ =
∑s

k=1
λk~uk~v

T
k
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(see (6.10)). Then, passing to the limit as ε′ → 0 in equality (6.16) and utilizing (6.18),
we get the S1 -equation. Theorem 6.2 is proved.

Let us consider several corollaries.

Corollary 6.1. If in addition to the conditions of Theorem 6.1 s = m, Γs = Im×m then
j = m and equation (6.10) has the unique solution

Â = −Im×mTrW−1
[
a + Tr W−1

]−1
,

where W = ZT Z, Z = R−1/2XD−1/2.

Proof. We represent the matrix W in the form W = HBHT , where H is an orthogonal
matrix and B = (biδij) is a diagonal matrix. Then from equation (6.11) we have

Baλ1

j∑

k=1

~̃νk~̃u
T

k pk + λ1

j∑

k=1

~̃νk~̃u
T

k +
s∑

k=j+1

λk~̃νk~̃u
T

k + I = 0,

where ~̃vk = HT~vk , ~̃uk = HT ~uk.
Multiplying this equation from the right by ~̃uk we get the system of equations

l1 (Bapk + I) ~̃vk = −~̃uk; k = 1, ..., j; λq~̃vq = −~̃uq; q = j + 1, ..., m.

Hence λq ≡ 1; q = j + 1, ...,m. But from the first j equalities, it follows that

l1 ≤
[
~̃v

T

k (Bapk + I) ~̃vk

]−1

< 1.

Therefore j = m. Then

Ba l1
∑m

k=1
~̃vk~̃u

T

k pk + λ1

∑m

k=1
~̃vk~̃u

T

k = −I.

Denoting
U =

(
~̃uk, k = 1, ..., m

)
, V =

(
~̃vk, k = 1, ...,m

)
, P = (pkδkl)

from this equation we have
(aBV P + V )UT = −l−1

1 I.

Hence
(aBV P + V )(aBV P + V )T = l−2

1 I

and (aK + B−1)2 = l−2
1 B−2, where K = V PV T . It is easy to see that

aK + B−1 = l−1
1 B−1

and
l1 = TrB−1(a + TrB−1)−1, V UT = −I.

Corollary 6.1 is proved.
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Corollary 6.2. If in addition to the conditions of Theorem 6.1 s = m, matrix V is nonde-
generate, W = (ωiδij) is a diagonal matrix, then

Âm×m = − (λkδkj)
m
k,j=1

where

λi =
j∑

k=1

γ
1/2
k ω−1

k

[
a +

j∑

k=1

ω−1
k

]−1

, i = 1, ..., j; λq = γ1/2
q , q = j + 1, ..., m,

the number j satisfies the inequality

∑j

k=1
γ

1/2
k ω−1

k

[
a +

∑j

k=1
ω−1

k

]−1

> γ
1/2
j+1, γm+1 ≡ 0,

and γ1 ≥ · · · ≥ γm > 0 are the eigenvalues of the matrix B = D−1/2V D−1/2.

Proof. In this case equation (6.11) has the form

Waλ1

j∑

k=1

~νk~uT
k pk + λ1

j∑

k=1

~νk~uT
k +

m∑

k=j+1

λk~νk~uT
k + Γm×m = 0.

Multiplying this equation by Γ−1
m×m, ~vT

k and ~uk we get

~vT
k λ1Γ−1(aWpk + 1)~vk = −~vT

k ~uk; ~vT
q λqΓ−1~vq = −~vT

q ~uq.

In our case

Γ−1(aWpk + 1)

is a symmetric matrix. Therefore, V = U,

{λ1 (aWpk + I − Γ)}~vk = 0, k = 1, ..., j; (Γ− λqI)~vq = 0; q = j + 1, ..., m.

From this equation we get the system of equations

aωkλ1pk + λ1 = γ
1/2
k , k = 1, ..., j; λq = γ1/2

q , q = j + 1, ...,m.

From these equations we obtain the assertion of Corollary 6.2.
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